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Abstract

The new application of the two degrees of freedom beam theory that takes into account the ability of fibers to

resist bending is the main purpose of the present study. In the considered theory, the shape function of

Ambartsumian (1958) is involved in the displacement field. Based on the use of the aforementioned

displacement functions the strains and stresses are presented where the asymmetric part of the shear stress are

provided. Furthermore, the solution of governing equilibrium equations is obtained in which contains terms

related to the fiber bending stiffness. Numerical results of the obtained solution are computed and discussed.

Keywords: shape function, fiber bending stiffness, asymmetric part of the shear stress.

1. Introduction
Beam and plate theories have received a
numerous attention by many researches. classical
beam theory which is known as Euler Bernoulli
beam theory was first enunciated circa around
1750 (Bailey, 2013). The rotatory inertia and shear
deformation were involved in the first order shear
deformation beam theory by Timoshenko in
(Timoshenko, 1921). It was pointed out that,
Timoshenko investigated the effect of the
transverse shear and, the rotatory inertia on the
prismatic bars transverse vibration (Ghugal &
Sharma, 2011). The well-known Kirchhof
assumptions in the plate theory was employed in
the theories of Reissner and Stavsky theory,
Whitney and Leissa theory and; Ashton theory
those established in 1961, 1970 and 1970
respectively (Mantari, Oktem, & Guedes Soares,
2012). It was concluded that the rotary inertia and
shear affected significantly on the flexure motions
on elastic plates which are isotropic (Mindlin,
1951). Composite laminates in cylindrical bending
problem was considered and an exact solution for
simply supported plates was presented in (N.J.
Pagano, 1969). The study of three elasticity
solution of bending of composite laminates that

have infinite long and finite size and subjected to
sinusoidal loading applied on the its top surface
where the exact solution was obtained (N. J.
Pagano, 1970). The theory of a refined shear
deformation has been studied for flexure of
isotropic solid beams that associated with several
loading and boundary conditions where the
numerical obtained results were compared with
their counterparts based on different one-D
theory and the exact solution (Ghugal & Sharma,
2011). Theory of hyperbolic shear deformation
has been presented for deep fixed-fixed beam
where the constitutive relations are used to
obtain the transverse shear stresses (Dahake,
2014).

The aforementioned Pagano exact solutions (N.J.
Pagano, 1969; N. J. Pagano, 1970) have been used
extensively in order to verify the credibility of
several one-D and tow-D liner elasticity theory
such as (Ali F. Farhat & Soldatos, 15 Apr 2015; Liu,
Zhang, & Zhang, 1994; L{, Lim, & Xu, 2007;
Mantari et al., 2012; Kostas P. Soldatos & Watson,
1997a, 1997b; Wang & Shi, 2015). All of that has
been in the case where the plates and the beams
are reinforced with perfectly flexible fibers. The
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assumption that the fibers have the ability to
resist in bending has been involved theoretically
in (Spencer & Soldatos, 2007). Considering the
fibers  bending stiffness, the linearized,
asymmetric 3D elasticity theory has been studied
where an additional elastic (fiore bending)
modulus is involved in the governing problem
equations in addition to 2D plate theory
developed with this consideration (Kostas P.
Soldatos, 2009). An exact asymmetric 3D linear
elasticity solutions for Cylindrical Bending and
Vibration of simply supported beams and plates
have been presented (Ali. F. Farhat, 2013; Ali F.
Farhat & Soldatos, 15 Apr 2015). That exact
solutions have been employed to assess the
accuracy of various one-D and tow-D plate beam
theories such as (A. Farhat & Gwila., May - June
2017; Ali. F. Farhat, 2013; K. P. Soldatos, Aydogdu,
M., & Gul, 2019; K. P. Soldatos & Farhat, 20
September 2016). The differences of the
displacement field assumed in several beam and
plate theories are caused by the number of the
degrees of freedom and the shape functions those
can determine the transverse shear strains and
stresses distribution through the thickness. The
shape function of Ambartsumian theory (1958) in
addition to some other shape functions which
employed different theories were mentioned in
(Mantari et al., 2012).

The aim of the present study is to consider the
model of polar material plate that presented in
(Kostas P. Soldatos, 2009) with the use of the two
degrees of freedom displacement which involves
the shape function of Ambartsumian (1958 ).
Regarding to these consideration, section 2
formulates the problem where the displacement
field will be assumed. Then, the strain and the
stress components including the asymmetric
stress will be formulated. Consequently,
equilibrium equations and the boundary
conditions that govern the problem are discussed
in section five where the terms those related to
the fiber bending stiffness are considered.
Furthermore, the Navier-type differential
equations system is solved in section six then,
numerical results will be presented and discussed
in the seventh section. At the end, the significant
findings related to the effect of the assumption
that the fibers can resist bending will be

concluded. Then, recommendation for related
future work will be provided.

2. Formulation of the problem

Consider a linearly elastic transversely isotropic
homogeneous beam that have thickness h in the z
direction, length L in the x direction and one unit
in the y direction. The beam middle plane will be
assumed to be laying on the Oxy plane. The beam
is reinforced with a single family of straight fibers
in parallel to x direction that can resist bending. In
addition, the beam is assumed to be simply
supported on the edges x =0 and x =L and
subjected to transverse load q(x) applied on the
top beam surface. Furthermore, it would be
convenient, as assumed in (K. P. Soldatos &
Farhat, 20 September 2016), to assume that the
external load applied normally on the top lateral
plane of the beam (z = 1/2) has the sinusoidal
form as follows:

40 = G SN@), P =", m=12, (1)

With the use of the shape function of
Ambartsumian (1958 ), the displacement field will
be employed in the present paper is in the
following form:

2 2
Ulx,z,t) = —zw, + g[hj_ Z?] u,(x,t) (2.9

W(x,z,t) = w(x,t) (2.b)

Where t denotes time and in here as well as the
coma denotes the partial differentiation.
Furthermore, U(x,z,t) and W(x,zt) represent
displacement functions along x and z directions
respectively. Moreover, w(x,t) represents the
beam deflection that is assumed to be independent
of thickness of the beam.

3. Strains

Inserting the displacement field (2) into the
following linear kinematic relations:

au au ow

Ex a! Vxz = E ax’ (3)
Which leads to the following strain field:

hZ 2 h2
e =z ki3 [T - F]ktra = [T -
2
“lee, . @

Where,
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Where quantities denoted with a superscript “c” are
the same as their classical beam theory
counterparts whereas those with a superscript “a”
represent the transvers shear deformation effects.

4. Stresses

According to the generalized Hooke’s law the
normal and the symmetric part of the shear stress
are given as shown in (Kostas P. Soldatos, 2009)
as follows respectively:

Oy = Q1185 Txz) = Qss Viz» (6)

Whereas, the anti-symmetric part of the shear
stress component takes the following form (Kostas
P. Soldatos, 2009):

1 1 7
Tixz] = ~Tzx] = mey,x = 2 dez,x =

1
3 de,xxx (7)

Where d/ is the additional elastic modulus that
related to the fiber bending stiffness (Kostas P.
Soldatos, 2009). It has been pointed out in (Ali. F.
Farhat, 2013) and, in further related studies that for
comparison reason between the solutions based on
one-D and two-D methods with the exact solutions,
the following notation:

1

will be employed in the present paper. Such
notation has to be involved to include the
parameter [ that of the material intrinsic length
which can be considered to the fiber thickness. The
full form of the shear stress presented in the case
of the presence of the fiber bending stiffness is as
follows (Kostas P. Soldatos, 2009):

Taz = T(xz) T Tlxz] (9.2)
Tzx = T(xz) — Tlxz] (9.b)

Furthermore, with the use of equations (7), (8) and
(9) one can write the shear stress in the following
appropriate form

1
Tez = Qss Yz — 24 Ci1l Lw yxx (10.3)

1
Tyz = Q55 Yz + 24 Ciy ! LW,xxx (10.b)
Consequently, the following form of the force and

moment resultant can be employed in the present
study:

h h
c— (2 a_ (2

N{ = [*0,dz, Mg = f_ﬁa"_[?_

2 2

h
2 — h2 2
Sae, 08 = Fiyre [ - 5] de, m =
h

h
2 f_1r2 —
[noxzdz, My == [*ymy,dz =
2 2

—Cy1lLh

lhy (11)

h
—C111lL 3 _
— f_g Wdz =

These forms will serve to formulate the governing
equations of the considered present problem in the
fore coming section.

5. Governing equations and
boundary conditions

In order to determine the two degrees of freedom
involved in the displacement field (2) those are u,
and w, one can use the relevant two-D equations of
motion presented in (Kostas P. Soldatos, 2009) for
writing the following one-D equations of motion:

N{ = —pyviy + P iy, (12.a)

M;,xx + ij:,xx =q(x) + pOW“‘}‘ P2W s +
ﬁlllul,xx (12'b)

Mg,x - chl = _ﬁlllw,x + ﬁézul (12-C)

In which will be reduced in the present paper that
focus on finding the static solution of the
considered problem to the following equilibrium
equations:

Mg + ML = q(x) (13.2)
M7, —Q3i=0 (13.b)

Where the dots appear in equations (12) denote the
ordinary differentiation with respect to time and
the inertia terms in the right side of equations (12)
will take zero value in the present case of finding
the static solution which leads to the equilibrium
equations (13). Moreover, the simply supported
end boundary conditionsat x = 0 and x = L are as
follows (Kostas P. Soldatos, 2009):

W =0, M.+ M/ =0and,M% =0 (14)

Which will help the formulate the particular
solution of the considered problem that associated
with the simply supported end boundary conditions
in the next section.
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6. The solution of governing
equilibrium equations

With the use of the displacement field (2) in
connection with (6-10) on can write the force and
moment resultant (11):

M; = Dll(_W,xx) + Dfi(ul,x):

M)? = Dfl(_w,xx) + D{lia(ul,x)v

~Cy1lLh
My = =5 W
Qx = Ass (uy),
Where
h
Dy, = f_zg Qu,7° dz, Dy =
2
h
2 0. 2 [ﬁ _ i]
f_g Qss 5 |7 — 5|92,

aa g 22 22
D = f_ngs T[T_?] dz, and Agg =
2

hS
320

Qss |5 — 4] (15)
Consequently, the equilibrium equations (13) can
be rewritten as a set of two simultaneous
differential equations in two unknowns. These
differential equations can be obtained with the use
of equations (15) in terms of the displacement
components yielding the following Navier-type
differential equations system:

_lelw,xxxx + Dflul,xxx =q(x) (16.a)
_Dflw,xxx + Dflaul,xx — Assu; =0 (16.b)

Where the rigidity D/, is related to fiber bending
modulus and the rigidity D;; and defined as
presented in (Ali. F. Farhat, 2013):

Difl = %hdf + Dll = %ClllLdf + Dll (17)

It can be seen that the number of end boundary
conditions (14) meets the sixth order of the set of
ordinary differential equations that with respect to
the x- coordinate. The sought solution for
equilibrium equations (16) is of the form that the
following displacement components:

uy = Acos(pypx),w = Bsin(p,x) (18)

satisfy exactly the conditions (14) at the beam ends
x =0and x = L. Consequently, inserting the

assumption (18) into Navier-type differential
equations system (16) will convert it to the
following two simultaneous linear algebraic
equations system of two unknown constants A and
B:

pDl  PaDh ][B] [ a9
pmDY  phDIf — Ads|tA 0

In which can be solved to obtain the values of A
and B. Consequently, the substitution of these
obtained values in equations (18) gives the desired
solution. Furthermore, based on the obtained
solution, numerical results and related discussion
going to be presented in the following section.

7. Results and Discussion

In a similar manner which followed by several
researchers that appears in the literature to
test the reliability of the considered 1D
model, numerical results in the case of simply
supported boundary conditions have been
presented. In order to present appropriate
comparisons between the results based on
the obtained solution and (Ali F. Farhat &
Soldatos, 15 Apr 2015), the same notation of
the fibre bending stiffness elastic modulus d”
and non-dimensional parameter A has been
employed. The elastic properties of the
transversely isotropic beam material are
assumed as follows (Ali F. Farhat & Soldatos,
15 Apr 2015):

EL/ET = 4‘0, GLT/ET = 05, GTT/ET = 02,
Vit = Vprr = 025

Where L and T denote properties which
associated with the longitudinal and
transverse fibre direction, respectively.

Table 1 shows numerical results of through-
thickness in-plane displacement distributions
of a homogeneous beam that has thickness to
length ratio of (h/L= 0.25). It can be seen that
the results of perfectly flexible fibres where
A =0 of the present solution and their
counterparts of the Pagano solution (N.J.
Pagano, 1969) are close to each other.
Moreover, one can see that the numerical
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results for different values of the non-
dimensional  fibre  bending  stiffness
parameter A based on the present solution
and those based on the exact asymmetric
solution presented in (Ali F. Farhat &
Soldatos, 15 Apr 2015) are close to each

Table 2 depicts numerical results for the
through-thickness deflection distributions of
a homogeneous beam that has thickness to
length ratio of (h/L= 0.25). The deflection is
computed at the medal length of the beam
which is expected to be the maximum of it.

other.

Table 1 Through-thickness in-plane displacement distributions of a homogeneous beam (h/L= 0.25)

ErU(0,2)/Lqgy ErU(0,2)/Lg, ErU(0,2)/Lgy ErU(0,2)/Lqy ErU(0,2)/Lgy
Z/h at 1=0 at 1 =.002 at 1=.004 at 1 =.006 at 1=.008
Exact Present Exact Present Exact Present Exact Present Exact Present
0.5 0.129524 | 0.137407 | 0.0768314 | 0.039865 | 0.045604 | 0.038799 | 0.024773 | 0.037789 | 0.009768 | 0.036828
0.4 0.061373 | 0.066636 | 0.035698 | 0.059345 | 0.020603 | 0.057758 | 0.010630 | 0.056253 | 0.003527 | 0.054824
0.3 0.027746 | 0.024724 | 0.015502 | 0.056641 | 0.008408 | 0.055126 | 0.003805 | 0.053690 | 0.0005967 | 0.052326
0.2 0.011110 | 0.004458 | 0.005604 | 0.042561 | 0.002507 | 0.041423 | 0.000573 | 0.040344 | -0.000711 | 0.093319
0.1 0.002564 | 0.001378 | 0.000611 | 0.022565 | -0.000397 | 0.021962 | -0.000949 | 0.021389 | -0.001250 | 0.020846
0 -0.002681 | 0 -0.002369 | O -0.002063 | O -0.001763 | O -0.001470 | O
-0.1 | -0.007731 | -0.001378 | -0.005195 | -0.022565 | -0.003616 | -0.021962 | -0.002504 | -0.021389 | -0.001655 | -0.020846
-0.2 | -0.015588 | -0.004458 | -0.009646 | -0.042561 | -0.006120 | -0.041423 | -0.003767 | -0.040344 | -0.002070 | -0.093319
-0.3 | -0.030677 | -0.024725 | -0.018322 | -0.056641 | -0.011118 | -0.055126 | -0.006406 | -0.053690 | -0.003090 | -0.052326
-0.4 | -0.061091 | -0.066636 | -0.035972 | -0.059345 | -0.021421 | -0.057758 | -0.011980 | -0.056253 | -0.005398 | -0.054824
-0.5 | -0.122702 | -0.137407 | -0.071907 | -0.039865 | -0.042543 | -0.038799 | -0.023543 | -0.037789 | -0.010337 | -0.036828
Table 2 Through-thickness deflection distributions of a homogeneous beam (h/L= 0.25)
EW G, 2)/La, EWG,2)/La; EWG,2)/La; EW G, 2)/La, EWG,2)/La;
“/n
at A=10 at A=.002 at 1 =.004 at 1 =.006 at A=.008
Exact Present Exact Present Exact Present Exact Present Exact Present

0.5 -1.209112 | -1.115430 | -0.911522 | -0.674378 | -0.737394 | -0.656338 | -0.623020 | -0.639238 | -0.542095 | -0.623007

0.4 -1.188321 | -1.115430 | -0.890188 | -0.674378 | -0.715752 | -0.656338 | -0.601183 | -0.639238 | -0.520126 | -0.623007

0.3 -1.167960 | -1.115430 | -0.870126 | -0.674378 | -0.695899 | -0.656338 | -0.581495 | -0.639238 | -0.500578 | -0.623007

0.2 -1.149490 | -1.115430 | -0.852186 | -0.674378 | -0.678317 | -0.656338 | -0.564187 | -0.639238 | -0.483496 | -0.623007

0.1 -1.133595 | -1.115430 | -0.836755 | -0.674378 | -0.663210 | -0.656338 | -0.549336 | -0.639238 | -0.468861 | -0.623007

0 -1.120566 | -1.115430 | -0.823983 | -0.674378 | -0.650641 | -0.656338 | -0.536944 | -0.639238 | -0.456629 | -0.623007

-0.1 | -1.110468 | -1.115430 | -0.813889 | -0.674378 | -0.640600 | -0.656338 | -0.526978 | -0.639238 | -0.446749 | -0.623007

-0.2 | -1.103195 | -1.115430 | -0.806396 | -0.674378 | -0.633022 | -0.656338 | -0.519378 | -0.639238 | -0.439163 | -0.623007
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-0.3 | -1.098430 | -1.115430 | -0.801305 | -0.674378 | -0.627773 | -0.656338 | -0.514053 | -0.639238 | -0.433807 | -0.623007
-0.4 | -1.095495 | -1.115430 | -0.798210 | -0.674378 | -0.624605 | -0.656338 | -0.510853 | -0.639238 | -0.430597 | -0.623007
-0.5 | -1.093010 | -1.115430 | -0.796296 | -0.674378 | -0.623027 | -0.656338 | -0.509498 | -0.639238 | -0.429402 | -0.623007
0
0.1-1
02-
— »=0.002
03-- — 2=0.004
E TW(L/2,2)Lq 1 — 2=0.006
— 2=0.008
04-+ »=0.01
0.5-1
0.6-

Figure 1 the deflection distributions of a homogeneous beam (h/L= 0.25) at different values of Lamda

It can be seen that the deflection based on
the present solution does not change through
the beam thickness which is caused by the
independent displacement function w on z.
In addition, the deflection at the different
values of the non-dimensional fibre bending
stiffness parameter A is close to the average
of it obtained on the exact solution.
Furthermore, it is clear as expected that as
the value of the parameter A increases, the
values of the deflection decreases.

The deflection distributions along the length
of a homogeneous considered beam with
thickness to length ratio of (h/L= 0.25) at
different values of A is shown in the figure 1.
One can see obviously, again, that as the
value of the parameter A increases, the
values of the deflection decreases.

8. Conclusion

Based on the presented numerical results
and the related discussion, it can be

concluded that although the ratio h/L=0.25
which characterises a very thick beam, the
presented results of displacement functions
U and W based on the present solution are
close to those based on the exact
asymmetric solution. Furthermore, the
rigidity of the beam caused by the fibres
bending stiffness increase as the values of
the parameter A increase when the values of
the deflection decrease. Finally, it can be
recommended that solutions for the case of
different boundary conditions can be
obtained with the use of the presented
theory with the consideration of the fibres
bending stiffness.
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Appendix

In the appendix, the following notation is
going to be provided:

Table of some used notation.

The sample What it is stand for.

U(x,z,t) and The displacement
W(x,z,t) functions along x and z
directions respectively.

Ex Normal strain.

Vxz Shear strain.

Oy Normal stress.

Txz Shear stress.

T(xz) The symmetric part of
the shear stress
component.

Tlxz] The anti-symmetric part
of the shear stress
component.

Myy The couple-stress
tensor.

Ni, Mg, Q¢, Mz, | The force and moment
M/ resultant.

C11, Q11 ,Qss, Ep, | The elastic properties of
the beam material.

ET,' GLT' GTT'
Urr Vrr

dar The fibre bending
stiffness elastic
modulus.

A the non-dimensional
fibre bending stiffness
parameter A

l The material intrinsic

length parameter
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