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Abstract 

The new application of the two degrees of freedom beam theory that takes into account the ability of fibers to 

resist bending is the main purpose of the present study. In the considered theory, the shape function of 

Ambartsumian (1958) is involved in the displacement field. Based on the use of the aforementioned 

displacement functions the strains and stresses are presented where the asymmetric part of the shear stress are 

provided. Furthermore, the solution of governing equilibrium equations is obtained in which contains terms 

related to the fiber bending stiffness. Numerical results of the obtained solution are computed and discussed.   

 

Keywords:  shape function, fiber bending stiffness, asymmetric part of the shear stress. 

 
1. Introduction   

Beam and plate theories have received a 

numerous attention by many researches. classical 

beam theory which is known as Euler Bernoulli 

beam theory was first enunciated circa around 

1750 (Bailey, 2013). The rotatory inertia and shear 

deformation were involved in the first order shear 

deformation beam theory by Timoshenko in 

(Timoshenko, 1921). It was pointed out that, 

Timoshenko investigated the effect of the 

transverse shear and, the rotatory inertia on the 

prismatic bars transverse vibration (Ghugal & 

Sharma, 2011). The well-known Kirchhof 

assumptions in the plate theory was employed in 

the theories of Reissner and Stavsky theory, 

Whitney and Leissa theory and; Ashton theory 

those established in 1961, 1970 and 1970 

respectively (Mantari, Oktem, & Guedes Soares, 

2012). It was concluded that the rotary inertia and 

shear affected significantly on the flexure motions 

on elastic plates which are isotropic (Mindlin, 

1951). Composite laminates in cylindrical bending 

problem was considered and an exact solution for 

simply supported plates was presented in (N.J. 

Pagano, 1969). The study of three elasticity 

solution of bending of composite laminates that 

have infinite long and finite size and subjected to 

sinusoidal loading applied on the its top surface 

where the exact solution was obtained (N. J. 

Pagano, 1970). The theory of a refined shear 

deformation has been studied for flexure of 

isotropic solid beams that associated with several 

loading and boundary conditions where the 

numerical obtained results were compared with 

their counterparts based on different one-D 

theory and the exact solution (Ghugal & Sharma, 

2011). Theory of hyperbolic shear deformation 

has been presented for deep fixed-fixed beam 

where the constitutive relations are used to 

obtain the transverse shear stresses (Dahake, 

2014). 

The aforementioned Pagano exact solutions (N.J. 

Pagano, 1969; N. J. Pagano, 1970) have been used 

extensively in order to verify the credibility of 

several one-D and tow-D liner elasticity theory 

such as (Ali F. Farhat & Soldatos, 15 Apr 2015; Liu, 

Zhang, & Zhang, 1994; Lü, Lim, & Xu, 2007; 

Mantari et al., 2012; Kostas P. Soldatos & Watson, 

1997a, 1997b; Wang & Shi, 2015). All of that has 

been in the case where the plates and the beams 

are reinforced with perfectly flexible fibers. The 
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assumption that the fibers have the ability to 

resist in bending has been involved theoretically 

in (Spencer & Soldatos, 2007). Considering the 

fibers bending stiffness, the linearized, 

asymmetric 3D elasticity theory has been studied 

where an additional elastic (fibre bending) 

modulus is involved in the governing problem 

equations in addition to 2D plate theory 

developed with this consideration (Kostas P. 

Soldatos, 2009). An exact asymmetric 3D linear 

elasticity solutions for Cylindrical Bending and 

Vibration of simply supported beams and plates  

have been presented (Ali. F. Farhat, 2013; Ali F. 

Farhat & Soldatos, 15 Apr 2015). That exact 

solutions have been employed to assess the 

accuracy of various one-D and tow-D plate beam 

theories such as (A. Farhat & Gwila., May - June 

2017; Ali. F. Farhat, 2013; K. P. Soldatos, Aydogdu, 

M., & Gul, 2019; K. P. Soldatos & Farhat, 20 

September 2016). The differences of the 

displacement field assumed in several beam and 

plate theories are caused by the number of the 

degrees of freedom and the shape functions those 

can determine the transverse shear strains and 

stresses distribution through the thickness. The 

shape function of Ambartsumian theory (1958) in 

addition to some other shape functions which 

employed different theories were mentioned in 

(Mantari et al., 2012). 

The aim of the present study is to consider the 

model of polar material plate that presented in 

(Kostas P. Soldatos, 2009) with the use of the two 

degrees of freedom displacement which involves 

the shape function of Ambartsumian (1958 ). 

Regarding to these consideration, section 2 

formulates the problem where the displacement 

field will be assumed. Then, the strain and the 

stress components including the asymmetric 

stress will be formulated. Consequently, 

equilibrium equations and the boundary 

conditions that govern the problem are discussed 

in section five where the terms those related to 

the fiber bending stiffness are considered. 

Furthermore, the Navier-type differential 

equations system is solved in section six then, 

numerical results will be presented and discussed 

in the seventh section. At the end, the significant 

findings related to the effect of the assumption 

that the fibers can resist bending will be 

concluded. Then, recommendation for related 

future work will be provided. 

2. Formulation of the problem 

Consider a linearly elastic transversely isotropic 

homogeneous beam that have thickness ℎ in the 𝑧 

direction, length 𝐿 in the 𝑥 direction and one unit 

in the 𝑦 direction. The beam middle plane will be 

assumed to be laying on the 𝑂𝑥𝑦 plane. The beam 

is reinforced with a single family of straight fibers 

in parallel to 𝑥 direction that can resist bending. In 

addition, the beam is assumed to be simply 

supported on the edges 𝑥 = 0 and 𝑥 = 𝐿 and 

subjected  to transverse load 𝑞(𝑥) applied on the 

top beam surface. Furthermore, it would be 

convenient, as assumed in (K. P. Soldatos & 

Farhat, 20 September 2016), to assume that the 

external load applied normally on the top lateral 

plane of the beam (𝑧 = 1 2)⁄  has the sinusoidal 

form as follows: 

𝑞(𝑥) = 𝑞𝑚 sin(𝑝𝑚𝑥) ,   𝑝𝑚 =
𝑚𝜋

𝐿
,   𝑚 = 1,2,    (1) 

With the use of the shape function of 

Ambartsumian (1958 ), the displacement field will 

be employed in the present  paper is in the 

following form: 

𝑈(𝑥, 𝑧, 𝑡) =  −𝑧 𝑤,𝑥 +  
𝑧

2
[

ℎ2

4
−

𝑧2

3
] 𝑢1(𝑥, 𝑡) (2.a) 

𝑊(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡)   (2.b) 

Where t denotes time and in here as well as the 

coma denotes the partial differentiation. 

Furthermore, 𝑈(𝑥, 𝑧, 𝑡) and 𝑊(𝑥, 𝑧, 𝑡) represent 

displacement functions along x and z directions 

respectively. Moreover, 𝑤(𝑥, 𝑡) represents the 

beam deflection that is assumed to be independent 

of thickness of the beam. 

3. Strains 

Inserting the displacement field (2) into the 

following linear kinematic relations: 

𝜺𝒙 =
𝝏𝑼

𝝏𝒙
,   𝜸𝒙𝒛 =

𝝏𝑼

𝝏𝒛
+  

𝝏𝑾

𝝏𝒙
,                (3)  

Which leads to the following strain field: 

𝜺𝒙 = 𝑧 𝑘𝑥
𝑐 +

𝑧

2
[

ℎ2

4
−

𝑧2

3
] 𝑘𝑥

𝑎 , 𝜸𝒙𝒛 =  [
ℎ2

8
−

𝑧2

2
] 𝑒𝑥𝑧                    

𝑎 ,                                                 (4) 

Where, 
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𝑘𝑥
𝑐 = −𝑤,𝑥𝑥, 𝑘𝑥

𝑎 = 𝑢1,𝑥 , 𝑎𝑛𝑑 𝑒𝑥𝑧
𝑎 = 𝑢1.           (5) 

Where quantities denoted with a superscript “c” are 

the same as their classical beam theory 

counterparts whereas those with a superscript “a” 

represent the transvers shear deformation effects. 

4. Stresses 

According to the generalized Hooke’s law the 

normal and the symmetric part of the shear stress 

are given as shown in (Kostas P. Soldatos, 2009) 

as follows respectively: 

𝜎𝑥 = 𝑄11𝜀𝑥,   𝜏(𝑥𝑧) = 𝑄55  𝛾𝑥𝑧,             (6) 

Whereas, the anti-symmetric part of the shear 

stress component takes the following form (Kostas 

P. Soldatos, 2009): 

𝜏[𝑥𝑧] = −𝜏[𝑧𝑥] =
1

2
𝑚𝑥𝑦,𝑥 =

1

2
 𝑑𝑓𝐾𝑧,𝑥

𝑓
=

−
1

2
𝑑𝑓𝑤,𝑥𝑥𝑥               (7) 

Where 𝑑𝑓 is the additional elastic modulus that 

related to the fiber bending stiffness (Kostas P. 

Soldatos, 2009). It has been pointed out in (Ali. F. 

Farhat, 2013) and, in further related studies that for 

comparison reason between the solutions based on 

one-D and two-D methods with the exact solutions, 

the following notation: 

𝑑𝑓 =
1

12
 𝐶11 𝑙 𝐿              (8) 

will be employed in the present paper. Such 

notation has to be involved to include the 

parameter 𝑙 that of the material intrinsic length 

which can be considered to the fiber thickness. The 

full form of the shear stress presented in the case 

of the presence of the fiber bending stiffness is as 

follows (Kostas P. Soldatos, 2009): 

𝜏𝑥𝑧 = 𝜏(𝑥𝑧) + 𝜏[𝑥𝑧]          (9.a) 

𝜏𝑧𝑥 = 𝜏(𝑥𝑧) − 𝜏[𝑥𝑧]         (9.b) 

Furthermore, with the use of equations (7), (8) and 

(9) one can write the shear stress in the following 

appropriate form  

𝜏𝑥𝑧 = 𝑄55  𝛾𝑥𝑧 −
1

24
 𝐶11 𝑙 𝐿𝑤,𝑥𝑥𝑥        (10.a) 

𝜏𝑥𝑧 = 𝑄55  𝛾𝑥𝑧 +
1

24
 𝐶11 𝑙 𝐿𝑤,𝑥𝑥𝑥        (10.b) 

Consequently, the following form of the force and 

moment resultant can be employed in the present 

study: 

𝑁𝑥
𝑐 = ∫ 𝜎𝑥 𝑑𝑧,    

ℎ

2

−
ℎ

2

𝑀𝑥
𝑎 = ∫ 𝜎𝑥

𝑧

2
[

ℎ2

4
−

ℎ

2

−
ℎ

2

𝑧2

3
] 𝑑𝑧,    𝑄𝑥

𝑎 = ∫ 𝜏(𝑥𝑧) [
ℎ2

8
−

𝑧2

2
]  𝑑𝑧,

ℎ

2

−
ℎ

2

  𝑀𝑥
𝑐 =

∫ 𝜎𝑥𝑧 𝑑𝑧,
ℎ

2

−
ℎ

2

   𝑀𝑥
𝑓

=
1

2
∫ 𝑚𝑥𝑦𝑑𝑧 =

ℎ

2

−
ℎ

2

−𝐶11𝑙𝐿

24
∫ 𝑤,𝑥𝑥𝑑𝑧

ℎ

2

−
ℎ

2

=
−𝐶11𝑙𝐿ℎ

24
𝑤,𝑥𝑥          (11) 

These forms will serve to formulate the governing 

equations of the considered present problem in the 

fore coming section.   

5. Governing equations and 

boundary conditions 

In order to determine the two degrees of freedom 

involved in the displacement field (2) those are 𝑢1 

and 𝑤, one can use the relevant two-D equations of 

motion presented in (Kostas P. Soldatos, 2009) for 

writing the following one-D equations of motion: 

𝑁𝑥
𝑐 =  −𝜌1𝑤̈,𝑥 + 𝜌̂0

11𝑢̈1,           (12.a) 

𝑀𝑥,𝑥𝑥
𝑐 + 𝑀𝑥,𝑥𝑥

𝑓
= 𝑞(𝑥) + 𝜌0𝑤 +̈ 𝜌2𝑤̈,𝑥𝑥 +

𝜌̂1
11𝑢̈1,𝑥𝑥                                        (12.b) 

𝑀𝑥,𝑥
𝑎 − 𝑄𝑥

𝑎 = −𝜌̂1
11𝑤̈,𝑥 + 𝜌̂0

12𝑢̈1          (12.c) 

In which will be reduced in the present paper that 

focus on finding the static solution of the 

considered problem to the following equilibrium 

equations:  

𝑀𝑥,𝑥𝑥
𝑐 + 𝑀𝑥,𝑥𝑥

𝑓
= 𝑞(𝑥)                (13.a) 

𝑀𝑥,𝑥
𝑎 − 𝑄𝑥

𝑎 = 0             (13.b) 

Where the dots appear in equations (12) denote the 

ordinary differentiation with respect to time and 

the inertia terms in the right side of equations (12) 

will take zero value in the present case of finding 

the static solution which leads to the equilibrium 

equations (13). Moreover, the simply supported 

end boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿 are as 

follows (Kostas P. Soldatos, 2009): 

 𝑊 = 0, 𝑀𝑥
𝑐 + 𝑀𝑥

𝑓
= 0 𝑎𝑛𝑑, 𝑀𝑥

𝑎 = 0          (14) 

Which will help the formulate the particular 

solution of the considered problem that associated 

with the simply supported end boundary conditions 

in the next section. 
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6. The solution of governing 

equilibrium equations 

With the use of the displacement field (2) in 

connection with (6-10) on can write the force and 

moment resultant (11): 

𝑀𝑥
𝑐 =  𝐷11(−𝑤,𝑥𝑥) + 𝐷11

𝑎 (𝑢1,𝑥), 

𝑀𝑥
𝑎 = 𝐷11

𝑎 (−𝑤,𝑥𝑥) + 𝐷11
𝑎𝑎(𝑢1,𝑥), 

𝑀𝑥
𝑓

=
−𝐶11𝑙𝐿ℎ

24
𝑤,𝑥𝑥 , 

𝑄𝑥
𝑎 = 𝐴55 (𝑢1), 

Where: 

𝐷11 = ∫ 𝑄11𝑧2 𝑑𝑧,
ℎ

2

−
ℎ

2

 , 𝐷11
𝑎 =

∫ 𝑄55  
𝑧2

2
[

ℎ2

4
−

𝑧2

3
] 𝑑𝑧,

ℎ

2

−
ℎ

2

 , 

 𝐷11
𝑎𝑎 = ∫ 𝑄55  

𝑧2

4
[

ℎ2

4
−

𝑧2

3
]

2

𝑑𝑧,
ℎ

2

−
ℎ

2

  and  𝐴55 =

𝑄55 [
ℎ5

320
− 4 ℎ].                  (15) 

Consequently, the equilibrium equations (13) can 

be rewritten as a set of two simultaneous 

differential equations in two unknowns. These 

differential equations can be obtained with the use 

of equations (15) in terms of the displacement 

components yielding the following Navier-type 

differential equations system: 

−𝐷11
𝑓

𝑤,𝑥𝑥𝑥𝑥 + 𝐷11
𝑎 𝑢1,𝑥𝑥𝑥 = 𝑞(𝑥)          (16.a) 

−𝐷11
𝑎 𝑤,𝑥𝑥𝑥 +  𝐷11

𝑎𝑎𝑢1,𝑥𝑥 − 𝐴55𝑢1 = 0  (16.b) 

Where the rigidity 𝐷11
𝑓

 is related to fiber bending 

modulus and the rigidity 𝐷11 and defined as 

presented in (Ali. F. Farhat, 2013): 

𝐷11
𝑓

=
1

2
ℎ𝑑𝑓 + 𝐷11 =

ℎ

24
𝐶11𝑙𝐿𝑑𝑓 + 𝐷11  (17) 

It can be seen that the number of end boundary 

conditions (14) meets the sixth order of the set of 

ordinary differential equations that with respect to 

the x- coordinate. The sought solution for 

equilibrium equations (16) is of the form that the 

following displacement components:  

𝑢1 = 𝐴 cos(𝑝𝑚𝑥) , 𝑤 = 𝐵𝑠𝑖𝑛(𝑝𝑚𝑥)         (18) 

satisfy exactly the conditions (14) at the beam ends 

𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝐿. Consequently, inserting the 

assumption (18) into Navier-type differential 

equations system (16) will convert it to the 

following two simultaneous linear algebraic 

equations system of two unknown constants A and 

B: 

[
𝑝𝑚

4 𝐷11
𝑓

𝑝𝑚
3 𝐷11

𝑎

𝑝𝑚
3 𝐷11

𝑎 𝑝𝑚
2 𝐷11

𝑎𝑎 − 𝐴55
𝑎

] [
𝐵
𝐴

] = [
𝑞𝑚

0
] (19) 

In which can be solved to obtain the values of A 

and B. Consequently, the substitution of these 

obtained values in equations (18) gives the desired 

solution. Furthermore, based on the obtained 

solution, numerical results and related discussion 

going to be presented in the following section. 

7. Results and Discussion 

In  a similar manner which followed by several 

researchers that appears in the literature to 

test the reliability of the considered 1D 

model, numerical results in the case of simply 

supported boundary conditions have been 

presented. In order to present appropriate 

comparisons between the results based on 

the obtained solution and (Ali F. Farhat & 

Soldatos, 15 Apr 2015), the same notation of 

the fibre bending stiffness elastic modulus 𝑑𝑓 

and non-dimensional parameter 𝜆 has been 

employed. The elastic properties of the 

transversely isotropic beam material are 

assumed as follows (Ali F. Farhat & Soldatos, 

15 Apr 2015):  

𝐸𝐿 𝐸𝑇 = 40⁄ , 𝐺𝐿𝑇 𝐸𝑇 = 0.5⁄ ,  𝐺𝑇𝑇 𝐸𝑇 = 0.2⁄ ,  

𝑣𝐿𝑇 = 𝑣𝑇𝑇 = 0.25. 

Where 𝐿 and 𝑇 denote properties which 

associated with the longitudinal and 

transverse fibre direction, respectively.  

Table 1 shows numerical results of through-

thickness in-plane displacement distributions 

of a homogeneous beam that has thickness to 

length ratio of (h/L= 0.25). It can be seen that 

the results of perfectly flexible fibres where 

𝜆 = 0 of the present solution and their 

counterparts of  the Pagano solution (N.J. 

Pagano, 1969) are close to each other. 

Moreover, one can see that the numerical 
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results for different values of the non-

dimensional fibre bending stiffness 

parameter 𝜆 based on the present solution 

and those based on the exact asymmetric 

solution presented in (Ali F. Farhat & 

Soldatos, 15 Apr 2015) are close to each 

other. 

Table 2 depicts numerical results for the 

through-thickness deflection distributions of 

a homogeneous beam that has thickness to 

length ratio of (h/L= 0.25). The deflection is 

computed at the medal length of the beam 

which is expected to be the maximum of it. 

 

 

Table 1 Through-thickness in-plane displacement distributions of a homogeneous beam (h/L= 0.25) 

 

 

 
Table 2 Through-thickness deflection distributions of a homogeneous beam (h/L= 0.25) 

 

𝑧
ℎ⁄  

𝐸𝑇𝑊(
𝐿

2
, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = 0 

𝐸𝑇𝑊(
𝐿

2
, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = .002 

𝐸𝑇𝑊(
𝐿

2
, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = .004 

𝐸𝑇𝑊(
𝐿

2
, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = .006 

𝐸𝑇𝑊(
𝐿

2
, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = .008 

Exact Present Exact Present Exact Present Exact Present Exact Present 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-1.209112 

-1.188321 

-1.167960 

-1.149490 

-1.133595 

-1.120566 

-1.110468 

-1.103195 

-1.115430 

-1.115430 

-1.115430 

-1.115430 

-1.115430 

-1.115430 

-1.115430 

-1.115430 

-0.911522 

-0.890188 

-0.870126 

-0.852186 

-0.836755 

-0.823983 

-0.813889 

-0.806396 

-0.674378 

-0.674378 

-0.674378 

-0.674378 

-0.674378 

-0.674378 

-0.674378 

-0.674378 

-0.737394 

-0.715752 

-0.695899 

-0.678317 

-0.663210 

-0.650641 

-0.640600 

-0.633022 

-0.656338 

-0.656338 

-0.656338 

-0.656338 

-0.656338 

-0.656338 

-0.656338 

-0.656338 

-0.623020 

-0.601183 

-0.581495 

-0.564187 

-0.549336 

-0.536944 

-0.526978 

-0.519378 

-0.639238 

-0.639238 

-0.639238 

-0.639238 

-0.639238 

-0.639238 

-0.639238 

-0.639238 

-0.542095 

-0.520126 

-0.500578 

-0.483496 

-0.468861 

-0.456629 

-0.446749 

-0.439163 

-0.623007 

-0.623007 

-0.623007 

-0.623007 

-0.623007 

-0.623007 

-0.623007 

-0.623007 

 

𝑧
ℎ⁄  

𝐸𝑇𝑈(0, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = 0 

𝐸𝑇𝑈(0, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = .002 

𝐸𝑇𝑈(0, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = .004 

𝐸𝑇𝑈(0, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = .006 

𝐸𝑇𝑈(0, 𝑧)/𝐿𝑞1 

𝑎𝑡  𝜆 = .008 

Exact Present Exact Present Exact Present Exact Present Exact Present 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

0.129524 

0.061373 

0.027746 
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Figure 1 the deflection distributions of a homogeneous beam (h/L= 0.25) at different values of Lamda 

It can be seen that the deflection based on 

the present solution does not change through 

the beam thickness which is caused by the 

independent displacement function  𝑤 on 𝑧. 

In addition, the deflection at the different 

values of the non-dimensional fibre bending 

stiffness parameter 𝜆 is close to the average 

of it obtained on the exact solution. 

Furthermore, it is clear as expected that as 

the value of the parameter 𝜆 increases, the 

values of the deflection decreases. 

The deflection distributions along the length 

of a homogeneous considered beam with 

thickness to length ratio of (h/L= 0.25) at 

different values of 𝜆 is shown in the figure 1. 

One can see obviously, again, that as the 

value of the parameter 𝜆 increases, the 

values of the deflection decreases.  

8. Conclusion 

Based on the presented numerical results 
and the related discussion, it can be 

concluded that although the ratio h/L= 0.25 
which characterises a very thick beam, the 
presented results of displacement functions 
𝑈 and 𝑊 based on the present solution are 
close to those based on the exact 
asymmetric solution. Furthermore, the 
rigidity of the beam caused by the fibres 
bending stiffness increase as the values of 
the parameter 𝜆 increase when the values of 
the deflection decrease. Finally, it can be 
recommended that solutions for the case of 
different boundary conditions can be 
obtained with the use of the presented 
theory with the consideration of the fibres 
bending stiffness. 
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Appendix 

In the appendix, the following notation is 

going to be provided: 

Table of some used notation. 

The sample What it is stand for. 

𝑈(𝑥, 𝑧, 𝑡) and 

𝑊(𝑥, 𝑧, 𝑡) 
The displacement 

functions along x and z 

directions respectively. 

𝜺𝒙 Normal strain. 

𝛾𝑥𝑧 Shear strain. 

𝜎𝑥 Normal stress. 

𝜏xz Shear stress. 

𝜏(𝑥𝑧) The symmetric part of 

the shear stress 

component. 

𝜏[𝑥𝑧] The anti-symmetric part 

of the shear stress 

component. 

𝑚𝑥𝑦 The couple-stress 

tensor. 

𝑁𝑥
𝑐 , 𝑀𝑥

𝑎, 𝑄𝑥
𝑎 , 𝑀𝑥

𝑐 ,

𝑀𝑥
𝑓

 

The force and moment 

resultant. 

𝐶11, 𝑄11  , 𝑄55, 𝐸𝐿, 

 𝐸𝑇,, 𝐺𝐿𝑇 , 𝐺𝑇𝑇 ,  

𝑣𝐿𝑇 , 𝑣𝑇𝑇  

The elastic properties of 

the beam material. 

𝑑𝑓 The fibre bending 

stiffness elastic 

modulus.  

𝜆 the non-dimensional 

fibre bending stiffness 

parameter 𝜆 

𝑙 The material intrinsic 

length parameter 
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 تطبيق جديد لنظرية الدعامة المرنة لامبارتسميان 

 علي فرج فرحات 
 قسم الرياضيات –  كلية العلوم – الجامعة الاسمرية الإسلامية 

aliffarhat@yahoo.com 
 

 الملخص 

قابلية  الاعتبار  بعين  تأخذ  والتي  درجتي حرية  لها  التي  المرنة  )القضبان(  الدعامة  لنظرية  تطبيق جديد 

الالياف لمقاومة الثني هو الهدف الرئيسي للدراسة المعروضة بهذا البحث. في هذه النظرية المطبقة بهذا  

خدام  ت. باسالازاحة المستخدمةل ( متضمنة في فرضية دوا1958البحث كانت دالة التشكيل لامبارتسميان ) 

الفرضية تم    هذه  المتماثل    إيجادلدوال الازاحة  المتضمن الجزء غير  القص.   لإجهادالانفعال و الاجهاد 

المتضمن حدود ذات الضابطة للمسألة موضع الدراسة و  معادلات الاتزانحل    إيجادذلك تم  الى    بالإضافة

نتائج عددية للحل المتحصل عليه مرفق  و  إيجادالعلاقة بمبدأ صلابة الالياف المقاومة للثني. تم   عرض 

 مناقشة لهذه النتائج المتحصل عليها.  حليل و بت

 القص.  لإجهاد: دالة التشكيل، صلابة الالياف المقاومة للثني، الجزء غير المتماثل الكلمات المفتاحية
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